General Equilibrium Notation, Pareto Efficiency

Econ 3030

Fall 2025

Lecture 16

Outline

- General Equilibrium notation
- Pareto Optimality
- Individual Rationality

General Equilibrium

General Equilibrium Theory

A theory of interactions between all agents in an economy that considers preferences, technology, and resources as the only exogenous items.

- How would a social planner allocate resources among consumers and firms?
 - The main concept is Pareto efficiency: outcomes cannot be redistributed to improve welfare.
- 4 How do competitive markets allocate resources?
 - The main concept is competitive equilibrium: all agents make optimal choices taking prices as given, and prices are such that demand and supply are "equal" in all markets.
- Important questions:
 - when is a competitive equilibirum Pareto efficient? First Welfare Theorem;
 - when is a Pareto efficient outcome an equilibirum? Second Welfare Theorem;
 - **3** when does a competitive equilibirum exist? Arrow-Debreu-McKenzie Theorem;
 - when is a competitive equilibrium unique?
 - is a competitive equilibrium robust to small perturbations of the parameters?
 - 6 how do we get to a competitive equilibrium, and what happens away from it?
 - how do we model time and/or uncertainty?

The Economy

- An economy consists of I individuals and J firms who consume and produce L
 perfectly divisible commodities.
- Each firm j = 1, ..., J is described by a production set $Y_j \subset \mathbb{R}^L$.
- Each consumer i = 1, ..., I is described by four objects:
 - a consumption set $X_i \subset \mathbb{R}^L$;
 - preferences \succeq_i over X_i ;
 - an individual endowment, given by a vector of commodities $\omega_i \in X_i$; and
 - a non-negative share $\theta_i \in [0,1]^J$ of the profits of each firm j.

Definition

An economy with private ownership is a tuple

$$\left\{\left\{X_{i}, \succsim_{i}, \boldsymbol{\omega}_{i}, \theta_{i}\right\}_{i=1}^{I}, \left\{Y_{j}\right\}_{j=1}^{J}\right\}$$

- If ownership does not matter, an economy is $\left\{\left\{X_i, \succsim_i\right\}_{i=1}^I, \left\{Y_j\right\}_{j=1}^J, \omega\right\}$, where $\omega = \sum_{i=1}^I \omega_i \in \mathbb{R}^L$ is the aggregate endowment.
 - The aggregate endowment describes the resources available to the economy.

Allocations

• What is an outcome for the economy?

Definition

An allocation specifies a consumption vector $\mathbf{x}_i \in X_i$ for each consumer i = 1, ..., I, and a production vector $\mathbf{y}_j \in Y_j$ for each firm j = 1, ..., J; an allocation is

$$(\mathbf{x},\mathbf{y}) \in \prod_{i=1}^{I} X_i imes \prod_{j=1}^{J} Y_j \subset \mathbb{R}^{L(I+J)}$$

• This is a long lists of what everyone consumes and what every firm produces:

$$(\mathbf{x}_1,...,\mathbf{x}_I,\mathbf{y}_1,...,\mathbf{y}_J) \in X_1 \times ... \times X_I \times Y_1 \times ... \times Y_J$$

- consumption must be in each consumer's preference domain $(\mathbf{x}_i \in X_i)$, and
- production must be technologically feasible for each firm $(\mathbf{y}_j \in Y_j)$.
- Are all allocations achieveable? No
 - The definition of allocation does not reflect available resources.
- The initial endowments place constraints on what can be achieved.

Feasibility

Definition

An allocation (x, y) is feasible if

$$\sum_{i=1}^{I} \mathbf{x}_i \leq \sum_{i=1}^{I} \boldsymbol{\omega}_i + \sum_{j=1}^{J} \mathbf{y}_j$$

- A feasible allocation can be consumed and produced given the economy's resources: consumption and production are compatible with the aggregate endowment.
 - Feasibility has nothing to do with choices by consumers or firms.
 - Feasibility has nothing to do with ownership.
- Why the inequality instead of an equality?

Definition

The set of feasible allocations is denoted by

$$\{(\mathbf{x},\mathbf{y})\in\prod_{i=1}^{I}X_{i}\times\prod_{i=1}^{J}Y_{j}:\sum_{i=1}^{I}\mathbf{x}_{i}\leq\omega+\sum_{i=1}^{J}\mathbf{y}_{j}\}\subset\mathbb{R}^{L(I+J)}$$

Conditions for Existence of Feasible Allocations

Proposition

If the following conditions are satisfied, the set of feasible allocations is closed and bounded, and non-empty.

- **1** X_i is closed and bounded below for each i = 1, ..., I.
- ② Y_j is closed for each j = 1, ..., J.
- **1** $Y = \sum_{j} Y_{j}$ is convex and satisfies
 - $\mathbf{0} \ \mathbf{0}_L \in Y \ (inaction),$
 - $Y \cap \mathbf{R}_{+}^{L} \subseteq \{\mathbf{0}_{L}\}$ (no free-lunch), and
 - **3** if $\mathbf{y} \in Y$ and $\mathbf{y} \neq \mathbf{0}_L$ then $-\mathbf{y} \notin Y$ (irreversibility).
- ullet $-\mathbb{R}_+^L\subset Y_j$ (free-disposal), and there are $\mathbf{x}_i\in X_i$ for each i such that $\sum_i\mathbf{x}_i\leq oldsymbol{\omega}$

 We will take the above properties of the set of feasible allocations for granted unless stated otherwise.

Edgeworth Box Economy

- No production. Two goods, denoted 1 and 2, and two consumers, denoted A and B.
- An allocation is given by four numbers

$$\mathbf{x}_A = (x_{1A}, x_{2A})$$
 and $\mathbf{x}_B = (x_{1B}, x_{2B})$

The set of feasible allocations is described as

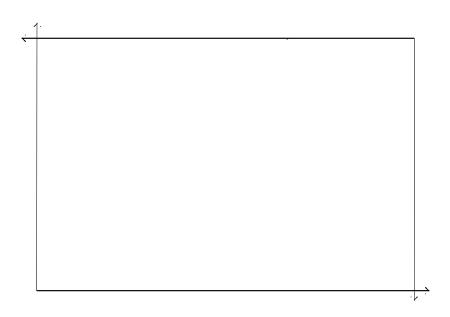
$$\left\{ \left(\mathbf{x}_{A},\mathbf{x}_{B}\right)\in\mathbb{R}^{4}:\mathbf{x}_{A}\in\mathbb{R}_{+}^{2}\text{, }\mathbf{x}_{B}\in\mathbb{R}_{+}^{2}\text{, and }\mathbf{x}_{A}+\mathbf{x}_{B}\leq\boldsymbol{\omega}_{A}+\boldsymbol{\omega}_{B}\right\}$$

so a feasible allocation must satisfy

$$x_{1A} + x_{1B} \le \omega_{1A} + \omega_{1B}$$
 and $x_{2A} + x_{2B} \le \omega_{2A} + \omega_{2B}$

- Since the inequality is important, we can imagine the economy has one firm with the following technology: $Y_1 = -\mathbb{R}^2_+$. This firm can destroy any amount of the goods.
- We can represent all feasible allocation by means of an Edgeworth Box.

Edgeworth Box



Exchange Economy

- In an exchange economy there is no production.
 - This is like an Edgeworth Box economy, but there are I consumers and L goods.
 - There is a single firm that can dispose of amounts of the goods: formally, J=1, and $Y_j=-\mathbb{R}_+^L$.

In an exchange economy the set of feasible allocations is

$$\{\mathbf{x} \in \prod_{i=1}^{I} X_i : \sum_{i=1}^{I} \mathbf{x}_i \leq \omega\} \subset \mathbb{R}^{LI}$$

This is a simple environment in which many results are easier to prove, and that most
of the time has the same intuition as an economy with production.

Edgeworth Box

- An Edgeworth Box is an exchange economy with two consumers and two goods.
- Formally L=2, I=2, $X_1=X_2=\mathbb{R}^2_+$, J=1, and $Y_j=-\mathbb{R}^2_+$.

Representative Agent Economy

- There are two goods, food F and labor L, one firm, and one consumer (both called Agent).
- The Agent's endowment is $\omega = (1,0)$ (one unit of labor and no food).
- The *Agent*'s technology transforms labor into food:

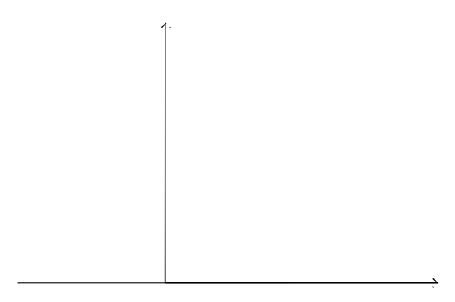
$$Y = \left\{ \left(y_L, y_F \right) \in \mathbb{R}^2 : y_L \le 0, \text{ and } y_F \le f \left(-y_L \right) \right\}$$

- The function $f(\cdot)$ is a standard production function.
 - The technology has the free disposal property: if $y \in Y$ and $y' \le y$ then y' is also an element of Y.
- A feasible allocation is described as

$$\left\{ (\mathsf{x},\mathsf{y}) \in \mathbb{R}^4 : \mathsf{x} \in \mathbb{R}^2_+ \text{, } \mathsf{y} \in Y \text{, and } \mathsf{x} \leq \omega + \mathsf{y}
ight\}$$

- Because of free disposal, one can think of the inequality as an equality without loss.
- Draw the production possibility set and the set of feasible consumption bundles.

Representative Agent



Efficiency

- What does it mean for an outcome to achieve a "minimal" notion of efficiency?
- First, an efficient outcome should be feasible.
 - Outcomes that are not feasible may be great, but are not interesting because they cannot be achieved.
- Second, an outcome is definitely not efficient if there exist another outcome that nobody would object switching to, and that someone would like better.
 - If such a different outcome exists the current outcome is not using the economy's resources in the best possible way.
- Efficiency is not about anyone's choices or decisions, but just about conditions under which one can say that an outcome is acceptable in a specific way.

Pareto Optimality (a.k.a. Pareto Efficiency)

Definition

An allocation (x', y') Pareto dominates the allocation (x, y) if

$$\mathbf{x}_i' \succsim_i \mathbf{x}_i$$
 and $\mathbf{x}_i' \succ_i \mathbf{x}_i$ for some i

Definition

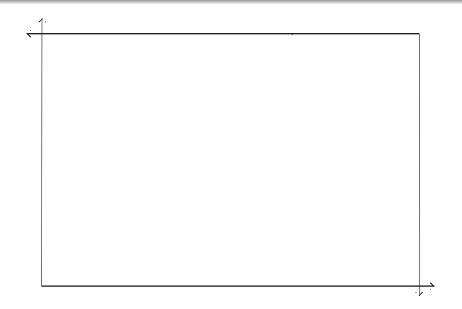
A feasible allocation (x, y) is Pareto optimal if there is no other feasible allocation that Pareto dominates it; that is, there exists no feasible (x', y') such that

$$\mathbf{x}_i' \succsim_i \mathbf{x}_i$$
 for all $i = 1, ..., I$ and $\mathbf{x}_i' \succ_i \mathbf{x}_i$ for some i

- Efficiency means there is no way to benefit someone without harming anyone.
- Feasibility is necessary: a feasible allocation is Pareto optimal if no feasible allocation Pareto dominates it.
- We only consider consumers, but firms matter because of what they produce.

Pareto Optimality: Examples

• Draw a Pareto optimal allocation for an Edgeworth box economy.



Pareto Optimality: Representative Agent

• Draw a Pareto optimal allocation for a Representative Agent economy.

Pareto Optimality Is Not Fairness

- Pareto optimal allocations are not necessarily fair:
 - when preferences are monotone, the allocations that give the aggregate endowment to a single individual are Pareto efficient.
- Fairness is hard to tackle and we will mostly ignore it.

- Pareto optimal allocations also disregard what each individual owns to begin with.
- The constraint that individuals should not lose relative to where they start from is easier to tackle: make sure nobody is better-off alone.

Individual Rationality

Suppose each individual has veto power over allocations.

Observation

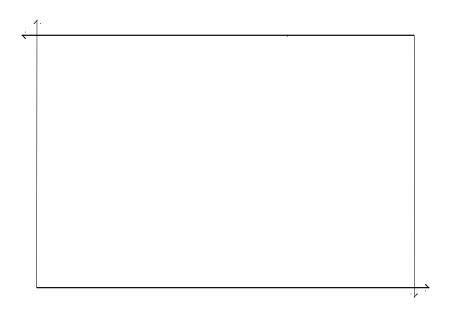
- Any consumer could veto allocations that do not improve her initial conditions.
- She rejects allocations that are worse than her initial endowment.
 - She can, for example, refuse to participate in the economy in those cases.

Definition

A feasible allocation (\mathbf{x}, \mathbf{y}) is individually rational if $\mathbf{x}_i \succsim_i \boldsymbol{\omega}_i$ for all i.

- An individually rational allocation represents a trade that does not make anyone worse-off relative to their initial endowment.
- Pareto optimal allocations are not necessarily individually rational.
- Draw a picture of Pareto optimal allocations that are not individually rational.

Pareto Optimality and Individual Rationality



Next Class

- Social Welfare Functions
- Utility Possibility Set
- Planner's Problem and Pareto Optimality